From SMART-1 to Moon Sample Return

Bernard Foing*& SMART-1, LES3, NEXT, ILEWG Teams

Executive Director ILEWG

Historical Moon sample returns

Apollo sample return missions

- Luna 16 landed September 17, 1970
- Luna 20, launched on February 14, 1972
- Luna 24, launched on August 9, 1975.

Europe to the Moon: spacecraft, launch, operations (ESA+ industry) Instruments Pls + Tls from 5 countries Co-ls from 13 ESA + 6 non European countries

SMART-1: With Sun power to the Moon on 60 liters of fuel

First European Far Side Image of The Moon by AMIE/SMART-1

12 Nov. 2004

Moon Phase & Mission Extension

Why the Moon: **Innovative Technologies on Smart-1**

KA-band antenna

Laser Link

Communication

OBAN

Autonomy

Triple junction solar cells

On-board computer

Lithium ion batteries

Platform Technologies

Multicolor microcamera

X-Ray Spectrometer

Infrared Spectrometer

Miniaturisation

SMART-1 last orbit

SMART-1 maps its own landing site Lake of Excellence 46.2 W 34.4 South

Highest resolution
Reference for future
detection of crater and
Ejectas

Impact time: 3 sept
5h42:21.7 UT
(within 1 s of prediction)

Our last Moon travelling shot

SMART-1 a bridge to Future missions

- Data analysis & Interpretation
- Technology Lessons Learned
- Science & Exploration Results
- Preparation for human lunar missions
- SMART-1 & next missions (collaborations)
 - 2007 Chinese Chang'e 1 (ground station)
 - 2007 JAXA Selene (science exchange)
 - 2008 ISRO Chandrayaan-1 (SIR2, C1XS, SARA)
 - 2008 LRO & LCROSS (reconnaissance, impact, outreach)
 - 2011- Orbiters (ESMO, ASI, Moon Lite, BW)
 - 2011- Landers, Rovers & Robotic village (US LPRP, Chang'e 2, Selene2, India, Lunaglob, ASI, D, UK, ESA)
 - 2015- Sample return: Chang'e 3, Selene3, ESA NEXT,
 - 2019- Human missions

From SMART-1 to Lur

From SMART-1 to Lunar Sample return: Science and Exploration Themes

HOW DO EARTH-LIKE PLANETS WORK?

GEOPHYSICS: volcanism, tectonics, craters, erosion, space weather, ices

HOW DO ROCKY PLANETS FORM AND EVOLVE?

GEOCHEMISTRY: chemical composition, Earth-Moon origin, Moon evolution, accretion, collisions, giant bombardment

PREPARING FUTURE LUNAR/PLANETARY EXPLORATION

LUNAR RESOURCES SURVEY (minerals, volatiles, illumination)

HIGH RESOLUTION MAPS: for future LANDING SITES and OUTPOSTS

SUPPORT TO FUTURE MISSIONS AND EXPLORATION

PUBLIC OUTREACH, INSPIRATION AND EDUCATION

What shapes rocky planets?

Why the Moon?
A laboratory
for Geophysics

erosion, volatiles

Tectoric wrinkles

cratering

Bombardment chronology

volcanism

SMART-1 view of Hadley Rille (giant lava tube) near Apollo 15 landing site

100 km field

AMIE SMART-1 High Res Colour

AMIE colour image

Reiner gamma Magnetic shield

Orbit 1438

Formation and evolution of rocky planets

Origin of the Moon: geochemistry
Evolution of Earth/Moon system
Impact craters and basins
Bombardment history in the inner
solar system
South Pole Aitken Basin

Edge debris from giant basin

SIR infrared spectra across craters: window to the subsurface

Mineral changes with SIR: from Highland to Mare

Mapping chemical resources:
How D-CIXS works

1 The Sun shines on the Moon (in X rays)

2 The Moon fluoresces

3 Each X-ray energy indicates unambiguously the abundance of a particular element

4 D-CIXS detects these X-rays

5 Solar Monitor for Solar Input required for absolute abundances

Sun Shines in X-rays

Early bombardment **Basin formation** Clementine moon map **Gravity Bouguer** anomalies (mascons) SMART-1 medium res survey 1 month coverage

rn BHF 5 2007

esa

Impact & Magmatic evolution

Serenitatis

Crater counts and lunar chronology

Lunarlandings

Unanswered questions about the Moon

- How did the Earth-Moon system form?
 - Giant Impact? Origin of impactor? Volatiles?
- How has the Moon evolved since?
 - Magma ocean?
- Necessary data
 - Composition (Mg, Al…)
 - Age and isotopic composition

The Moon impact formation. 4.5 Gvr

Science rationale for lunar sample return

Robotic Moon polar sample fetcher and return

no polar highlands samples yet, cometary and meteoritic record, organics/Extinct/extant life in regolith and polar ices, Planetary protection issues

Farside south pole Aitken basin sample return from mantle/lowercrust,

Sample return from youngest lava basalts in Procellarum

Global lunar sampling

Vertical lithology of craters central peaks

Early Earth Sample return (in cooperation with in-situ humans?)

- Search for Earth samples, Fossils of organics & ancient life from Early Earth (4 billion years ago)
- Validation of extreme organics and life detection technologies
- Expanding life beyond Earth

Technology demonstration

- Preparation for Mars sample return
- Lunar polar lander and rover fetcher
- Science opportunityTechnology demonstrator for lunar ascent vehicle and Earth reentry
- Preparation technology for human return vehicle
- ISRU demonstrator, He3 return demonstrator
- Life sciences and astrobiology lab sample return demonstrator,

Polar ice sample return

- 4 Gyr History of water, volatiles & organics delivery
- Permanent shadowed areas
- Core sample of ice
- Diversity of cometary and water rich asteroids
- Retrieve preserved samples
- Isotopic analysis, organics

North pole peaks of light

Summer average illumination Clementine

Winter image SMART-1

European Lunar Polar Lander LES3

- 1) Precise Landing on the Moon
- 2) Preparation of future exploration & sample fetcher
- 3) Geochemical study of polar regions
- 4) Ice Search/ characterisation Cost 300 Meuro
- Lander station element
- Rover element
- Robotic challenge
- Orbiter and relay infrastructures
- Opportunities for Students, education, outreach, cultural, artistic experiments
- Part of global robotic village with RPLP2, Chang-E2,
- Selene 2, etc...

LES3 study

- Lander station element
 - Technology survival, operations
 - Geophysical network
 - Life sciences/environment
- Rover element
 - Close range mobility 50 m: nanorover
 - Regional mobility 1-10 km: Exomoon rover
 - Vertical mobility (penetrating sensors, moles, drill)
- Lunar Robotic Challenge
- Communication/navigation/survey infrastructure:
 - Small orbiter with HRSC camera and data relay
 - Exchange/support other international orbiters/ landers

Conceptual design for lunar regional ExoMoon rover inherited from ExoMars

Instruments for Moon landers (100-180 kg):

- ELP European Lunar Geophysics package: 15-20 kg
 - Seismometer, Geodesy and laser, Heat flux, Magnetometer
- Lander instruments: 10 kg
 - Cameras: Descent, Pan Cam, Stereo, SRC
 - Local sample analysis (GCMS), permittivity
- Life science/environment experiments: 7 kg
 - Radiation/ environment/planetary protection studies
 - Melissa bacteria precursor, plants on the Moon
- Close proximity Rover: 5 kg
 - Neutron spectrometer, APX , Close up camera
 - Electromagnetic sounder, Ground penetrating radar
- ExoMoon Regional rover: 120 kg
 - Navigation and hazards avoidance, inspection cam,
 - Robotic arm (PAW like), drill and mole, Active seismic,
 - LIBS, Fluorescence, Thermal IR fluorescence
 - Dust lifting measurement device, QCM or cube piezo
- Lunar robotic challenge to access ice in dark: 15 nanorover, harpoon,

Sample return South Pole Aitken Basin

- window into the interior of the Moon and the past
- huge basin on the far side of the moon
- intensity of impacts there around 4 billion years ago
- to retrieve rock fragments
- two robotic landers and sample return
- Moonrise New Frontiers study heritage
- SMART-1 measurements of potential landing sites

Oceanus Procellarum: Volcanism in KREEP-province

- Relatively low, but Noritic parts of the crust are not excavated
- Rich volcanic history ->
 buoyancy not the only
 controlling mechanism
- KREEP-terrain rich in Th, U and K; heat from radio-active decay gives rise to magma due to thermal expansion

SMART-1 AMIE detailed targets: Procellarum and youngest basaltic flows

Coupling between impacts and volcanism

- Humorum: Multiringed impact basin
- Procellarum: Irregular basin
- Tectonics of mascon loading

F-1 to Lunar Sample Return BHF IPPW5 Bordeaux IPPW5 2007

Moon & Planetary Science

- Impact processes (from large basins to small SMART-1 impact)
- Cratering chronology
- Mineral vertical lithology variations from central peaks
- Volcanic processes and coupling
- Volcanic history & composition (Calcium in Crisium)
- Large impact basins (eg Imbrium, Humorum, Procellarum,)
- Constraints on Early and Late Heavy Bombardment
- South Pole Aitken Basin
- Moon Dichotomy
- Moon early evolution, Magma ocean and Crust Differentiation
- Surface composition Mg, Si, Al, Fe
- Constraints on Moon impact formation
- Preparing for future missions
 - Polar regions, volatiles, illumination and landers (in situ and samples)
 - Absolute chronology (samples)
 - Bulk composition and internal structure (seismometer)
 - Constraints on young Earth and solar system evolution

Sample Return Technology Synergies Moon- NEO-Phobos-asteroids-Mars

Planetary entry

(differences)

- Descent/ landing
- Rover sample fetcher (similar Moon/Mars)
- Robotics/sensors
- Ascent/return vehicle (local gravity, direct/RdV)
- Sample capsule/sealing (planetary protection differences)
- Earth reentry/shield (similar speeds)
- Sample curation
- Sample analysis

isotopic, age, volatiles, organics

NEXT missions for Exploration Science & Technology

- Preparation for MSR and future exploration
- Call for ideas: 70 proposals (04/07), 32 on lunar missions
- Technological capabilities
 - Soft Precision Landing with Hazard Avoidance, RdV, Ascent, Reentry
- Mission Characteristics
- Lunar Lander Sample Return Precursor
- Scientific goals, investigations, instruments, sites
- Ongoing CDF concurrent design and industrial studies

NEXT & sample return: lunar ideas

- Lunar Robotic Sample Return
- Materially Self-sufficient Production for a Lunar Colony
- Integrated Lunar Demonstration Mission with Landing Science Package (Moon Farside Explorer)
- Lunar Sample Return
- A European Lunar Scientific and Robotic Lander Mission
- Lunar Dust Observatory
- Lunar Sample Return Entry and Aerocapture Demonstration Mission (LEAD)
- Lunar Sample Return Missions
- Direct Lunar Sample Return Mission
- Lunar Exploration Lander
- Surface Navigation Services
- Active Seismic Survey for Planetary Drilling
- Teleoperated Lunar Drilling Exploiting Synergies with the Oil and Gas Exploration Sector
- ISRU Demonstration Facility on Lunar Surface
- MoonSailor
- Lunar Infrastructure For Exploration Astronomy & Space Science Mission
- MoonTwin
- Exploration of Lunar Craters at the Moon's South Pole
- Landing of an Astrobiological Habitat at the Moon's South Pole
- Landing of an Astrobiological Habitat and a Micro-Rover at the Moon's South Pople
- Lunar Sample Return

ILEWG9/ILC2007 Intl Lunar Conference

- 22-26 October 2007, Sorrento, Naples Bay, Italy, Co-hosted by ASI & ESA
- Co-chairs: S. Di Pippo (ASI), Wu Ji (China), M. Wargo (NASA), B.H.Foing (ILEWG/ESA)
- 1. Inauguration & Keynote speeches
- 2. Results from SMART-1, and latest reports from Chang'E 1 and Selene
- 3. Agencies activities and plans
- 4. Keynote speeches: Science, Technology, Human exploration
- 5. Status of Future Missions: Chandrayaan-1, LRO/ LCROSS, Future Orbiters
- 6. Science and Exploration of the Moon: Results, Open Questions and New Approaches
- 7. Technologies, Infrastructures, Resources for Future Robotic and Human exploration
- 8. Societal, legal, policy, economics
- 9 Next steps for Robotic Landers, Rovers and Outposts
- 10 International Prospects for utilization and human exploration.
- 11 Reports and recommendations from working groups
- 12 ICEUM9 recommendations and declaration
- 13 Young Lunar Explorers session
- Outreach/education for public and Youth
- 14 Posters & interactive sessions
- Geological field trip

Roadmap: International Lunar Exploration Working Group (sci.esa.int/ilewg)

Lunar landers & sample returns

- What are the conditions for planetary formation?
 - Impact basins, bombardment chronology, isotopic dating
- What are the conditions for life?
 - Search for extraterrestrial ice and organics on the Moon, and chronology
 - Habitability of Moon: life sciences towards ecosystems, mini biospheres
 - Search for Early Earth samples
- How does the Solar System work?
 - Comparative planetology: (volcanics, tectonics, cratering, erosion)
 - Interior & subsurface: seismic network, geodetics
- Technology for future exploration/science missions:
 - entry airless bodies,
 - Descent and landing,
 - robotics,
 - Instruments
 - Sample acquisition
 - Return and Earth reentry

